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Abstract 

This paper aims to share the PBO’s methodological approaches and expertise in using statistical 

techniques to simulate micro data for policy and costing analysis. While micro data are often 

essential for rigorous costing analysis, such data might not always be available or, if available, 

might not necessarily be representative of the target population of a policy. A potential strategy to 

tackle these issues is to simulate micro data using statistical techniques. As an example, this paper 

simulates micro data on earnings and validates the simulated data based on actual aggregated 

earnings data from the Central Statistics Office of Ireland (CSO). It also uses the simulated micro 

data to cost a hypothetical earnings-based welfare benefit and presents both mean and interval 

estimates to capture uncertainty. The paper concludes that the statistical simulation techniques 

outlined here are a useful addition to policy analysts’ toolkit. 
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Introduction  

The PBO conducts analyses of the financial implications of policy proposals.1 One of the 

common challenges faced is the availability and reliability of necessary micro data (i.e., data 

at the individual unit level). First, there might exist no relevant or usable micro data in the first 

place. Second, confidentiality and/or time constraints might make it impossible to access micro 

data in a timely manner. Third, there might be uncertainty on whether the available micro data 

is representative of the target population of a policy. Despite these issues, micro data are often 

essential for rigorous costing analysis. Using only aggregated data, is it oftentimes difficult to 

examine how much a proposed policy will cost in total, when the cost per person differs 

significantly across individuals. 

A potential strategy to tackle these issues related to micro data is to simulate micro data using 

statistical techniques. This paper aims to share, in an open and transparent manner, the PBO’s 

methodological approaches and expertise in using statistical simulation techniques for policy 

and costing analysis. 

The paper first gives an overview of what theoretical statistical distributions are; theoretical 

distributions are used to simulate data. Then, as an example, it simulates micro data on earnings 

and validates the simulated data based on actual aggregated earnings data from the Central 

Statistics Office of Ireland (CSO). Finally, the paper uses the simulated micro data on earnings 

to cost a hypothetical earnings-based welfare benefit. All analyses were done on the statistical 

software, R (the R code used is available in the appendix).2 

An Overview of Theoretical Data Distributions 

Theoretical statistical data distributions are defined based on specific theoretical properties, 

usually governed by a number of parameters. Different theoretical distributions are used to 

express various processes whereby data are generated. For example, the outcome of coin 

flipping can only be two values, either head or tail, while a measure of economic development 

(e.g., GDP per capita) can take a potentially infinite number of values. 

The outcome of coin flipping, or anything that expresses two distinctive situations only (e.g., 

the presence or absence of a public policy across countries), can be modelled by the Bernoulli 

distribution. The Bernoulli distribution expresses two distinctive outcomes by values of 0 and 

1, and has only one parameter 𝑝, which is the probability of one of these outcomes occurring 

(the probability of the other outcome occurring is simply 1 − 𝑝). Figure 1 presents an example 

of the Bernoulli distribution where each outcome has an equal probability of occurrence (𝑝 =
0.5). 

 

1 For our costing service, see Parliamentary Budget Office, “Policy Costing Service Guidelines,” 2022, 

https://data.oireachtas.ie/ie/oireachtas/parliamentaryBudgetOffice/2022/2022-06-15_policy-costing-

service-guidelines_en.pdf. 

2 R Core Team, “R: A Language and Environment for Statistical Computing,” 2022, https://www.R-

project.org. 
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Figure 1: Bernoulli distribution with the 50% probability 

 
 

Another well-known theoretical distribution is the normal distribution. It is governed by two 

parameters: the mean and standard deviation of the distribution. Figure 2 displays a normal 

distribution with the mean of 0 and the standard deviation of 1. With these parameter values, 

the distribution is often referred to as “standard normal distribution.” The standard deviation 

measures how spread data values are around the mean value. In the normal distribution, 

approximately 68% of data fall within the range of ± 1 standard deviation (between −1 and 1 

in Figure 2); approximately 95% of data fall within the range of ± 2 standard deviations 

(between −2 and 2 in Figure 2). 

Figure 2: Standard normal distribution 

 
Note: In a simplified (but therefore imprecise) term, probability density captures how “frequent” each 

value is. 

 

A real-world example of a variable whose data distribution tends to be well approximated by a 

normal distribution is the logarithm of real GDP per capita.3 The purple bars of Figure 3 are 

(log) real GDP per capita data values across the world from 2015 to 2020. The mean of this 

 

3 The logarithm of GDP per capita is used largely for statistical modelling and forecasting as it stabilises 

the variability. 
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normal distribution is approximately 8.79 and the standard deviation is approximately 1.44.4. 

Its overall shape is normal, although it is not as “neatly” shaped as the theoretical normal 

distribution constructed by the above mean and standard deviation values (as presented by the 

orange line). Usually, the distribution of actual data is not exactly the same as a theoretical 

distribution. In this sense, a theoretical distribution might be considered as an idealised version. 

Figure 3: GDP per capita on the logarithm scale across the world from 2015 to 2020 

 
Source: Author’s own calculation based on data from the World Bank Group.5 

Note: The purple bars are actual data; the orange line is a constructed theoretical distribution. 

 

From a different perspective, actual data can be considered a sample from a theoretical 

distribution. The size (i.e., the number of observations) of actual data is usually “finite” or 

limited by constraints on measurement. Meanwhile, a theoretical distribution is a data 

distribution whose size is infinite. Therefore, the distribution of actual data can be seen as an 

approximation of a theoretical distribution. In addition, just because data from a certain time 

period of the past have a slightly different shape from any theoretical distributions, it might not 

necessarily mean that the actual data do not follow any of the theoretical distributions. It might 

be because the specific sample or realisation of data happens to be less reflective of the 

underlying (unknown) true distribution of the data that follows a certain theoretical distribution. 

Whichever theoretical position one may take, simulating micro data based on a theoretical 

distribution can be useful for policy and costing analysis to overcome data issues and 

limitations. The next section gives an example of simulated micro data. 

 

4 Note that, because these numbers are on the logarithm scale and not on the original constant US dollar 

scale, we cannot directly interpret them in a substantively meaningful way. 

5 World Bank Group, “World Development Indicators,” 2022, https://databank.worldbank.org/source/ 

world-development-indicators. 
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Example of Micro Data Simulation 

As an example, we simulate micro data for weekly (gross) earnings. The Central Statistics 

Office of Ireland publishes percentiles of the weekly gross earnings distribution6; the latest 

version is from the 2020 administrative data.7 The percentile data suggest that the underlying 

micro data are distributed in a way similar to a log-normal distribution. The log-normal 

distribution takes only positive values or zero and can have a fat tail on the right side of the 

distribution (i.e., a large share of data takes smaller values than the average while a small share 

takes very large values). The left panel of Figure 4 is an example of the log-normal distribution 

and presents the simulated micro data on weekly earnings.8 The shape of the log-normal 

distribution was determined as follows: 

• The CSO reports that the average weekly earnings are €801. 

• The expected value of a log-normal distribution of the variable 𝑋 is defined as: 𝐸(𝑋) =

exp (𝜇 +
1

2
𝜎2 ), where 𝜇 is the mean parameter and 𝜎 is the standard deviation 

parameter. If 𝐸(𝑋) = 801 and either of the two parameters, 𝜇 and 𝜎, is set at a particular 

value, the value of the remaining parameter can be determined. 

• To this end, a value for the standard deviation parameter was identified using an 

iterative process (i.e., by trial and error) such that, for chosen values of the mean and 

standard deviation, the simulated percentiles approximate the CSO data well (when 

visually assessed). 

• We settled on the standard deviation, 𝜎, to be log (2.1), which then determines a value 

for the mean, 𝜇, as log (608.274). 

• The simulated values were rounded up to two digits. 

We generated a total of 2,222,500 observations, the number equal to the number of people in 

employment in 2020.9 A comparison between the percentiles generated from the simulated 

micro data and those published by the CSO data is presented in the right panel of Figure 4. The 

orange bars represent the simulated data while the purple bars show the CSO data. Although 

 

6 A percentile measures a value up to which a certain percentage of data falls. For example, if a 47% 

percentile of earnings is €600, it means that 47% of the earnings data falls between zero and €600. 

7 Central Statistics Office, “Earnings Analysis Using Administrative Data Sources 2020,” 2021, 

https://www.cso.ie/en/releasesandpublications/ep/p-

eaads/earningsanalysisusingadministrativedatasources2020/distribution/. 

8 More precisely, the data were simulated according to a log-normal distribution with the maximum 

value being capped at €6,800, which is a weekly average of the annual earnings of €350,000. This salary 

level is the upper bound one of the top paid position, chief financial officers, according to a professional 

services recruitment consultancy. Morgan McKinley, “10 Of The Highest Paying Jobs Ireland In 2022,” 

December 1, 2021, https://www.morganmckinley.com/ie/article/10-highest-paying-jobs-ireland-in-

2022. 

9 Central Statistics Office, “Statistical Yearbook of Ireland 2020: Labour Market,” 2020, 

https://www.cso.ie/en/releasesandpublications/ep/p-

syi/statisticalyearbookofireland2020/soc/labourmarket/. 
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the overlap is not perfect, the percentiles of the simulated micro data approximate the CSO data 

well. 

Figure 4: Simulated weekly earnings and comparison with the CSO data 

 
Note: The left panel is the distribution of the simulated micro data on weekly earnings. The right panel 

is the comparison between the percentiles of the simulated micro data (orange bars) and the CSO 

percentile data (purple bars). 

Example Application 

Once micro data are simulated, the next step is to use them for analysis. Here, we offer an 

example of a policy costing analysis, where a hypothetical welfare benefit is paid for a certain 

period of eligible leave from work, with the maximum payment period of 6 months (26 

weeks).10 We assume that the duration of the benefit is measured on a weekly basis. The 

payment is modelled according to three scenarios: 

• Scenario 1: A flat payment of €200 per week 

• Scenario 2: 80% of prior weekly earnings for each of the first 10 weeks, 60% of prior 

weekly earnings thereafter, with the minimum cap of €150 and the maximum cap of 

€250. 

• Scenario 3: 80% of prior weekly earnings for each of the first 10 weeks, 60% of prior 

weekly earnings thereafter, with the minimum cap of €150 and the maximum cap of 

€350. 

 

10 We leave the scope of the benefit intentionally abstract, to avoid the analysis being mistaken as 

something related to actual welfare schemes. 
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The analysis also draws on the following assumptions. We randomly draw 5% of the population 

(2,222,500 individuals in employment) and consider them to be the recipients of the benefit 

within a year. The duration of the receipt of the benefit for each individual is modelled using a 

normal distribution with a mean of 10 (weeks), a standard deviation of 5 (weeks), a minimum 

value capped at 1 (week), and a maximum value capped at 26 (weeks).11 This assumption 

means that there are more people who exit from the hypothetical scheme at earlier stages rather 

than at later stages. We assume that all three factors (earnings, the likelihood, and the duration) 

are independent of one another.12 Having these assumptions, we can calculate the annual cost. 

There is always uncertainty over whether simulated data are exactly the same as the 

corresponding actual (but unavailable or unknown) data. To incorporate such uncertainty, we 

can use multiple replications of the simulation known as Monte Carlo analysis. Monte Carlo 

analysis repeats a simulation many times, as simulated data vary per iteration because of the 

stochastic nature of drawing values from a theoretical distribution. 

The stochastic nature, or “stochasticity,” can be described as follows. Imagine that we were 

drawing a sample of 50 balls from a bag that has a million red balls and a million blue balls 

(the universe or the population). While we can expect to draw 25 red balls and 25 blue balls on 

average, each attempt may not always result in this (e.g., it might be 24 red balls and 26 blue 

balls). Stochasticity here refers to the possibility of a sample’s nature deviating from the nature 

of the population (here, two million balls) by random chance. 

In Monte Carlo analysis, on the basis that a simulation is repeated many times over, the estimate 

of interest (e.g., the total cost of the benefit) is computed per iteration. Once all iterations are 

complete, we obtain the distribution of these cost estimates. This distribution captures the 

uncertainty around the estimate, and we can, for example, compute the 95% 

credible/confidence interval based on that.13 The downside of Monte Carlo analysis is that it is 

computationally very demanding. 

Stochasticity can come not only from the process of drawing values from a theoretical 

distribution, but also from the process of determining parameter values for a theoretical 

distribution (e.g., values for the mean and the standard deviation parameters). When the analyst 

is unsure exactly what parameter values to use, they can express this uncertainty by using a 

theoretical distribution from which to draw parameter values, instead of determining a single 

specific parameter value. As a result, the distribution of the estimates after Monte Carlo 

analysis will generally be wider; in other words, there will be a greater variation in the 

 

11 The values generated are then rounded up to a zero digit because the unit used here is weeks. A 

normal distribution with the minimum/maximum value capped is called “truncated normal 

distribution.” 

12 If at least two of these factors are modelled as dependent on one another, it will be necessary to 

determine the parameter values that govern the type of relationship between these factors. Therefore, if 

these factors are interlinked, it is more complex to simulate micro data. 

13 A credible/confidence interval here means an interval that covers the range of the values that are 

likely to be observed with a certain probability level. For example, a 95% credible interval covers the 

range of the values that are 95% likely to be observed; the values outside this interval are likely to be 

observed with the remaining 5% probability. The 95% probability level is one conventional threshold 

applied in statistical analysis. 
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estimates, implying a greater level of uncertainty around the estimates. Here, the stochasticity 

on parameters is, as an example, modelled for the standard deviation parameter of the duration 

of the receipt of the benefit.14 

We then ran the Monte Carlo analysis, iterating the simulation 100 times.15 The total cost 

estimates for the three scenarios are presented in Table 1, where the uncertainty due to the 

stochasticity of the simulation process is expressed as the 95% credible interval. 

Table 1: Results of the Monte Carlo analysis of a hypothetical welfare scheme 

 Mean Lower Bound Upper Bound 

Scenario 1 €231.62 million €221.34 million €248.74 million 

Scenario 2 €289.53 million €276.67 million €310.92 million 

Scenario 3 €405.34 million €387.34 million €435.29 million 

Note: the lower and upper bounds are those of the 95% credible interval. 

 

One interesting observation is that, although Scenario 2 has the minimum cap of €150 and the 

maximum cap of €250 and the average value between these two caps is €200 =
150+250

2
, it 

costs 25% more than Scenario 1, where the flat rate of €200 is applied. This is because the cost 

per individual is not a function of the average value of the two caps but a function of their prior 

earnings with these caps applied. For example, if all recipients had prior earnings of €500, they 

would all receive €250 for their entire duration of the receipt of the benefit. Recall that the 

weekly payment for the first 10 weeks is 80% of prior earnings; that for the remaining weeks 

is 60% of prior earning; and there is the minimum cap of €150 and the maximum cap of €250. 

Then, €400 = €500 × 80%; €300 = €500 × 60%; and both figures are larger than €250, so 

that all recipients would receive €250. 

Of course, the analysis here is a simple example based on a hypothetical welfare benefit 

payment. Nonetheless, the main takeaway is that the calculation of the total cost is transparent 

 

14 A value for the standard deviation parameter for the duration is drawn from a normal distribution 

with the mean of 5 and the standard deviation of 1 with the minimum possible value capped at 1 (as the 

standard deviation must be greater than zero by definition). The number drawn is then rounded up to a 

zero digit as the unit used here is weeks. This setup means that the value of the standard deviation 

parameter should be, on average, 5 weeks but can be 3, 4, 6, or 7 weeks with approximately the 95% 

probability (and can be smaller than 3, or larger than 7, with the remaining probability). 

15 How many iterations of a simulation are adequate depends mainly on the size of data generated within 

the simulation, the complexity of the data simulation process, and the available computational power. 

Doing more iterations means more stability in the estimates but also greater demand for computational 

power and time. In the current setup, 100 iterations were enough to achieve a good balance between the 

stability in the estimates and fast completion in a standard computer; if we did 1,000 iterations, the 

estimates were only marginally different in proportional terms (the maximum difference of a 0.3% 

change). 
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once we simulate the underlying micro data. Namely, we calculate the cost per individual and 

sum all up. 

It is worth noting that Monte Carlo analysis is useful even when micro data are available. It 

can be used to model uncertainty around how representative the micro data one has are of the 

target population of a policy (i.e., whether it is plausible to extrapolate findings from observed 

data into the target population). As discussed previously, observed data might be considered as 

one realisation of some underlying theoretical distribution. Assuming that, it is worth recalling 

now that data drawn from (i.e., simulated by) a theoretical distribution may not necessarily be 

representative (as has been explained by an example of drawing balls from a bag of blue and 

red balls). In the same vein, observed data may not necessarily be representative of the 

underlying true distribution. It is possible to quantify this uncertainty by Monte Carlo analysis, 

assuming that observed data were drawn from a certain theoretical distribution. 

Conclusion 

The statistical simulation techniques outlined in this paper are a useful addition to policy 

analysts’ toolkit. While computationally resource-intensive in some cases, it can facilitate more 

sophisticated policy and costing analysis. When micro data are not available, Monte Carlo 

analysis can simulate micro data while modelling uncertainty around the process whereby data 

are generated. Furthermore, even when micro data is available, Monte Carlo analysis can help 

quantify uncertainty around the observed micro data. 

Appendix: R Code 

 

# Install the necessary packages if not installed yet 
# install.packages("ggplot2") 
# install.packages("WDI") 
# install.packages("readxl") 
# install.packages("gridExtra") 
# install.packages("EnvStats") 
 
 
# Load the necessary libraries 
library("ggplot2") 
library("WDI") 
library("readxl") 
library("gridExtra") 
library("EnvStats") 
 
 
 
 
##################################### 
# Theoretical distribution examples # 
##################################### 
 
 
# Bernoulli distribution 
 
x <- c(0,1) 
 
d <- data.frame(prob = dbinom(x, 1, 0.5), x = x) 
 
ggplot(data = d, aes(x = x, y = prob)) + 
  geom_bar(stat = "identity", fill = "#F09E37") + 
  scale_x_continuous(breaks = c(0, 1)) + 
  scale_y_continuous(limits = c(0, 1)) + 
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  labs(y = "probability", x = "data values") + 
  theme_bw() -> bern 
 
ggsave("bern.png", plot = bern, width = 2, height = 2, units = "in") 
 
 
# Standard normal distribution 
 
x <- seq(from = -3, to = 3, by = 0.001) 
 
d <- data.frame(dens = dnorm(x, 0, 1), x = x) 
 
ggplot(data = d, aes(x = x, y = dens)) + 
  geom_density(stat = "identity", color = "#F09E37") + 
  scale_x_continuous(breaks = seq(from = -3, to = 3, by = 1)) + 
  labs(y = "density", x = "data values") + 
  theme_bw() -> snd 
 
ggsave("snd.png", plot = snd, width = 3.5, height = 2, units = "in") 
 
 
# GDP per capita across the world from 2015 to 2020 
wdidata <- WDI(country = "all", 
               indicator = c(gdppc = "NY.GDP.PCAP.KD"), 
               start = 2015, end = 2020, extra = TRUE) 
 
wdidata_ss <- subset(wdidata, region != "Aggregates") 
wdidata_ss$lngdppc <- log(wdidata_ss$gdppc) 
 
# Mean 
mean(wdidata_ss$lngdppc, na.rm = TRUE) 
 
# Standard deviation 
sd(wdidata_ss$lngdppc, na.rm = TRUE) 
 
wdidata_ss$nd <- dnorm(wdidata_ss$lngdppc, 
                       mean(wdidata_ss$lngdppc, na.rm = TRUE), 
                       sd(wdidata_ss$lngdppc, na.rm = TRUE)) 
 
ggplot(data = wdidata_ss) + 
  geom_histogram(aes(y = ..density.., x = lngdppc), binwidth = 0.25, 
                 color = "black", fill = "#670048") + 
  geom_density(aes(y = nd, x = lngdppc), stat = "identity", 
               color = "#F09E37", size = 1.5) + 
  labs(y = "density", x = "GDP per capita (logarithm scale)") + 
  theme_bw() -> gdppcdist 
 
ggsave("gdppcdist.png", plot = gdppcdist, width = 3.5, height = 2, units = "in") 
 
 
 
 
 
########### 
# Example # 
########### 
 
 
# Earnings distribution 2020 
# 
# Source: CSO 
# https://www.cso.ie/en/releasesandpublications/ep/p-
eaads/earningsanalysisusingadministrativedatasources2020/distribution/ 
earnings_dist <- data.frame(percentile = 1:99, 
                            value = c( 
                              95, 121, 144, 162, 180, 195, 208, 221, 226, 235, 
                              248, 260, 272, 285, 297, 308, 320, 332, 344, 354, 
                              364, 375, 384, 394, 403, 412, 422, 431, 440, 449, 
                              458, 466, 475, 483, 492, 500, 509, 518, 527, 536, 
                              544, 554, 563, 572, 581, 590, 600, 610, 619, 629, 
                              640, 650, 661, 673, 683, 695, 708, 720, 732, 744, 
                              757, 767, 780, 794, 808, 823, 838, 853, 868, 885, 
                              902, 921, 940, 960, 980, 1002, 1026, 1050, 1076, 
                              1103, 1132, 1160, 1192, 1223, 1259, 1296, 1335, 
                              1376, 1421, 1473, 1532, 1598, 1676, 1768, 1889, 
                              2058, 2303, 2714, 3571 
                            ) 
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) 
 
 
# Simulate micro data 
ev <- 801 
sd <- 2.1 
logsd <- log(sd) 
mean <- exp( log(ev) - (1/2 * (logsd^2)) ) 
logmean <- log(mean) 
 
set.seed(2022) 
n <- 2222500 
simweekpay <- round(rlnormTrunc(n, logmean, logsd, max = 6800), digit = 2) 
 
 
# Aggregate simulated weekly earnings data into the percentile 
earnings_dist$simweekpay_percentile <- quantile(simweekpay, probs = rep(1:99)/100) 
 
 
# Plot the CSO data and the simulated data for comparison 
ggplot(data = earnings_dist, aes(x = percentile)) + 
  geom_bar(stat = "identity", aes(y = value), 
           alpha = 0.5, color = "#670048") + 
  geom_bar(stat = "identity", aes(y = simweekpay_percentile), 
           alpha = 0.5, color = "#F09E37") + 
  scale_x_continuous(breaks = rep(0:10)*10, 
                     lim = c(0,100)) + 
  scale_y_continuous(breaks = seq(from = 0, 
                                  to = 3600, 
                                  by = 200)) + 
  labs(y = "earnings", x = "percentiles") -> earnings_comp 
 
ggplot(data = data.frame(simweekpay)) + 
  geom_density(aes(x = simweekpay), color = "#F09E37") + 
  labs(y = "density", x = "earnings") -> earnings_sim 
 
 
earnings_plots <- grid.arrange(earnings_sim, earnings_comp, nrow = 1) 
 
 
ggsave("earnings_plots.png", plot = earnings_plots, 
       width = 7, height = 4, units = "in") 
 
 
 
 
############### 
# Application # 
############### 
 
 
# Model to compute the total cost of the benefit per recipient 
model <- function(weekpay, dur, lims = FALSE, min = 0, max = 1e4){ 
   
   
  # Return an error for wrong inputs 
  if(is.numeric(weekpay) == FALSE | weekpay <= 0 | 
     is.na(weekpay) == TRUE | round(weekpay, digit = 2) != weekpay){ 
     
    stop("weekpay must be a real number up to two digits.") 
  } 
   
  if(is.numeric(dur) == FALSE | dur < 0 | 
     is.na(dur) == TRUE | round(dur) != dur){ 
     
    stop("dur must be a natural number or zero.") 
  } 
   
  if(is.logical(lims) == FALSE){ 
     
    stop("lims must be a logical value.") 
  } 
   
  if(lims == TRUE){ 
    if(is.numeric(min) == FALSE | min < 0 | 
       is.na(min) == TRUE | round(min, digit = 2) != min){ 
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      stop("min must be a real number up to two digits or zero.") 
    } 
     
    if(is.numeric(max) == FALSE | max <= 0 | 
       is.na(max) == TRUE | round(max, digit = 2) != max){ 
       
      stop("max must be a real number up to two digits.") 
    } 
  } 
   
   
  # Determine the threshold weeks after which the benefit is reduced 
  threshold1 <- 10 
   
   
  # Function to apply min and max limits on benefits 
  limit <- function(benefit){ 
     
    if(benefit > max){ 
      revbenefit <- max 
    } 
     
    if(benefit < min){ 
      revbenefit <- min 
    } 
     
    if(benefit <= max & benefit >= min){ 
      revbenefit <- benefit 
    } 
     
    return(revbenefit) 
  } 
   
   
  # 1st stage benefit 
  # Min and max limits applied or not 
  if(lims == TRUE){ 
     
    weekpay1 <- limit(weekpay*0.8) 
  } 
  else{ 
     
    weekpay1 <- weekpay*0.8 
  } 
   
  # Round the value in case it has more than two digits 
  weekpay1 <- round(weekpay1, digit = 2) 
   
  # Compute the total benefit at the first stage 
  if(dur <= threshold1){ 
     
    fststg <- weekpay1 * dur 
  } 
  else{ 
     
    fststg <- weekpay1 * threshold1 
  } 
   
   
  # 2nd stage benefit 
  # Min and max limits applied or not 
  if(lims == TRUE){ 
     
    weekpay2 <- limit(weekpay*0.6) 
  } 
  else{ 
     
    weekpay2 <- weekpay*0.6 
  } 
   
  # Round the value in case it has more than two digits 
  weekpay2 <- round(weekpay2, digit = 2) 
   
  # Compute the total benefit at the second stage 
  if(dur > threshold1){ 
     
    scndstg <- weekpay2 * (dur - threshold1) 
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  } 
  else{ 
     
    scndstg <- 0 
  } 
   
   
  # Sum up all benefits to compute the total cost 
  tlcst <- fststg + scndstg 
  return(tlcst) 
   
} 
 
 
# Monte Carlo setup 
iter <- 100 
mat <- matrix(nrow = iter, ncol = 3) 
likeli <- 0.05 # Likelihood of receiving the benefit 
nsample <- n*0.1 # To make the loop finish faster; the sum of the individual 
                 # costs is then multiplied by 10 to obtain the population 
                 # value 
 
 
for(j in 1:iter){ 
   
   
  # Earnings 
  set.seed(j) 
  simweekpay <- round(rlnormTrunc(nsample, logmean, logsd, max = 6800), 
                      digit = 2) 
 
   
  # Whether an individual receives the benefit 
  set.seed(j) 
  receipt <- rbinom(nsample, 1, likeli) 
 
 
  # Subset for those who receive the benefit 
  d <- data.frame(simweekpay, receipt) 
  d_receipt <- subset(d, receipt == 1) 
   
   
  # Number of observations 
  nrow_d_receipt <- nrow(d_receipt) 
   
   
  # Duration of the receipt of the benefit 
  set.seed(j) 
  d_receipt$dur <- round( 
    rnormTrunc(nrow_d_receipt, 
               mean = 10, 
               sd = round( 
                 rnormTrunc(1, mean = 5, 
                            sd = 1, min = 1) 
               ), 
               min = 1, 
               max = 26) 
  ) 
 
   
  # Flat payment of 200 
  results1 <- mean(d_receipt$dur) * 200 * nrow_d_receipt 
  scenario1 <- sum(results1) * 10 / 1e6 # in a million euro 
   
   
  # 80% of prior earnings for first 10 weeks, 60% thereafter 
  # with the min and max cap of 150 and 250 
  results2 <- rep(NA, nrow_d_receipt) 
  for(i in 1:nrow_d_receipt){ 
     
    results2[i] <- model(d_receipt$simweekpay[i], d_receipt$dur[i], 
                         lims = TRUE, min = 150, max = 250) 
  } 
   
  scenario2 <- sum(results2) * 10 / 1e6 # in a million euro 
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  # 80% of prior earnings for first 10 weeks, 60% thereafter 
  # with the min and max cap of 150 and 350 
  results3 <- rep(NA, nrow_d_receipt) 
  for(i in 1:nrow_d_receipt){ 
     
    results3[i] <- model(d_receipt$simweekpay[i], d_receipt$dur[i], 
                         lims = TRUE, min = 150, max = 350) 
  } 
   
  scenario3 <- sum(results3) * 10 / 1e6 # in a million euro 
   
   
  # Store the results into the matrix 
  mat[j,] <- c(scenario1, scenario2, scenario3) 
 
   
  print(paste(j, " done", sep = "")) 
} 
 
 
# Mean and 95% credible interval for Scenario 1 
mean(mat[,1]) 
quantile(mat[,1], probs = c(0.025, 0.975)) 
 
 
# Mean and 95% credible interval for Scenario 3 
mean(mat[,2]) 
quantile(mat[,2], probs = c(0.025, 0.975)) 
 
 
# Mean and 95% credible interval for Scenario 3 
mean(mat[,3]) 
quantile(mat[,3], probs = c(0.025, 0.975)) 
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